Math Ncert Exemplar 2019 Solutions for Class 11 Science Maths Chapter 4 Principle Of Mathematical Induction are provided here with simple step-by-step explanations. These solutions for Principle Of Mathematical Induction are extremely popular among class 11 Science students for Maths Principle Of Mathematical Induction Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Math Ncert Exemplar 2019 Book of class 11 Science Maths Chapter 4 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Math Ncert Exemplar 2019 Solutions. All Math Ncert Exemplar 2019 Solutions for class 11 Science Maths are prepared by experts and are 100% accurate.

Page No 70:

Question 1:

Give an example of a statement P(n) which is true for all n ≥ 4 but P(1), P(2) and P(3) are not true. Justify your answer.

Answer:

Consider the statement

 P(n): 3n<n!For n=1, 3×1=3<1!, which is not trueFor n=2, 3×2=6<2!, which is not trueFor n=3, 3×3=9<3!, which is not trueFor n=4, 3×4=12<4!, which is trueFor n=5, 3×5=15<5!, which is true

Page No 70:

Question 2:

Give an example of a statement P(n) which is true for all n. Justify your answer.

Answer:

Consider the statement Pn: 1+2+3+4......n=nn+12When n=1, P1: 1=11+121=122LHS=RHSTherefore P1 is trueWhen n=2, P2: 1+2=22+123=232LHS=RHSTherefore P2 is trueWhen n=3, P3: 1+2+3=33+126=342LHS=RHSTherefore P3 is trueSimilarly, Pn will be true for all the other natural numbers.

Page No 70:

Question 3:

4n – 1 is divisible by 3, for each natural number n.

Answer:

Pn: 4n  1 is divisible by 3, nNP1=41 - 1=3, which is divisible by 3So P1 is true.Let P(k) be true.Pk=4k  1=3m.....(1) kN, mZ We shall now prove that Pk+1 is true whenever P(k) is true.Pk+1=4k+1  1Pk+1=4k.4  1Pk+1=3m+1.4  1                  using 1Pk+1=3m×4+4  1Pk+1=12m+3Pk+1=34m+1Pk+1 is clearly divisible by 3, so it's true.Hence, by principal of mathematical induction we can say Pn is true.

Page No 70:

Question 4:

23n – 1 is divisible by 7, for all natural numbers n.

Answer:

Pn: 23n  1 is divisible by 7, nNP1=23×1 - 1=7, which is divisible by 7So P1 is true.Let Pk be true.Pk=23k  1=7m.....1 kN, mZ We shall now prove that Pk+1 is true whenever Pk is true.Pk+1=23k+1  1Pk+1=23k+3  1Pk+1=23k.23  1=23k.8 - 1Pk+1=7m+1.8  1                using 1Pk+1=7m×8+8  1Pk+1=56m+7Pk+1=78m+1Pk+1 is clearly divisible by 7, so it's true.Hence, by principal of mathematical induction we can say Pn is true.

Page No 70:

Question 5:

n3 – 7n + 3 is divisible by 3, for all natural numbers n.

Answer:

Pn: n3 - 7n+3 is divisible by 3, nNP1=13 - 7×1+3= - 3, which is divisible by 3So P1 is true.Let Pk be true.We shall now prove that Pk+1 is true whenever Pk is true.Pk=k3 - 7k+3=3m.....1 kN, mZ Pk+1=k+13 - 7k+1+3Pk+1=k3+1+3k2+3k - 7k - 7+3Pk+1=k3 - 7k+3+3k2+3k - 6Pk+1=3m+3k2+k - 2                   using 1Pk+1=3m+k2+k - 2 Pk+1 is clearly divisible by 3, so it's true.Hence, by principal of mathematical induction we can say Pn is true.

Page No 70:

Question 6:

32n – 1 is divisible by 8, for all natural numbers n.

Answer:

Pn: 32n  1 is divisible by 8, nNP1=32×1 - 1=8, which is divisible by 8So P1 is true.Let Pk be true.Pk=32k  1=8m.....1 kN, mZ We shall now prove that Pk+1 is true whenever Pk is true.Pk+1=32k+1  1Pk+1=32k+2  1Pk+1=32k.32  1=32k.9 - 1Pk+1=8m+1.9  1                  using 1Pk+1=8m×9+9  1Pk+1=72m+8Pk+1=89m+1Pk+1 is clearly divisible by 8, so it's true.Hence, by principal of mathematical induction we can say Pn is true.



Page No 71:

Question 7:

For any natural number n, 7n – 2n is divisible by 5.

Answer:

Pn: 7n  2n is divisible by 5, nNP1=71  21=5, which is divisible by 5So P1 is true.Let Pk be true.Pk=7k  2k=5m.....1 kN, mZ We shall now prove that Pk+1 is true whenever P(k) is true.Pk+1=7k+1  2k+1Pk+1=7k.7  2k.2Pk+1=5m+2k.7  2k.2             using 1Pk+1=35m+2k.7 - 2k.2    Pk+1=35m+5.2kPk+1=57m+2kPk+1 is clearly divisible by 5, so it's true.Hence, by principal of mathematical induction we can say Pn is true.

Page No 71:

Question 8:

For any natural number n, xnyn is divisible by xy, where x and y are any integers with x ≠ y.

Answer:

Pn: xn  yn is divisible by x - y, nNP1=x1  y1=x - y, which is divisible by x - ySo P1 is true.Let Pk be true.Pk=xk  yk=m(x - y).....1 kN, mZ We shall now prove that Pk+1 is true whenever P(k) is true.Pk+1=xk+1  yk+1Pk+1=xk.x  yk.yPk+1=mx - y+yk.x  yk.y             using 1Pk+1=mx - my+yk.x  yk.y    Pk+1=mx2 - mxy+x.yk - ykyPk+1=mxx - y+ykx - yPk+1=x - ym+ykPk+1 is clearly divisible by x - y, so it's true.Hence, by principal of mathematical induction we can say Pn is true.

Page No 71:

Question 9:

n3n is divisible by 6, for each natural number n ≥ 2.

Answer:

Pn: n3 - n is divisible by 6, nNP1=13 - 1=0, which is divisible by 6So P1 is true.Let Pk be true.Pk=k3 - k=6m.....1 kN, mZ We shall now prove that Pk+1 is true whenever Pk is true.Pk+1=k+13 - k+1Pk+1=k3+1+3k2+3k - k - 1Pk+1=k3 - k+3k2+3kPk+1=6m+3k2+k              using 1Pk+1=6m+3kk+1we can write kk+1=2y ,yZ as it will always be even Pk+1=6m+32y6m+yPk+1 is clearly divisible by 6, so it's true.Hence, by principal of mathematical induction we can say Pn is true.

Page No 71:

Question 10:

n (n2 + 5) is divisible by 6, for each natural number n.

Answer:

Pn: nn2+5 is divisible by 6, nNP1=112+5=6, which is divisible by 6So P1 is true.Let Pk be true.Pk=kk2+5=6m.....1 kN, mZ We shall now prove that Pk+1 is true whenever Pk is true.Pk+1=k+1k+12+5Pk+1=k+1k2+1+2k+5Pk+1=k3+2k2+6k+k2+2k+6Pk+1=k3+5k+3k2+3k+6Pk+1=6m+3kk+1+6                  using 1we can write kk+1=2y ,yZ as it will always be even Pk+1=6m+32y+66m+y+1Pk+1 is clearly divisible by 6, so it's true.Hence, by principal of mathematical induction we can say Pn is true.

Page No 71:

Question 11:

n2 < 2n for all natural numbers n ≥ 5.

Answer:

Pn: n2<2n,n5P5:52<2525<32 So P5 is true.Let Pk be true. Then,Pk:k2<2k              .....1We shall now prove that Pk+1 is true whenever Pk is true.k+12=k2+1+2k<2k+2k+1    .....2   From 1Let 2k+2k+1<2k+12k+2k+1<2k.22k+2k+1<2k+2k2k+1<2k k5            .....3So, k+12<2k +2k k+12<2k+1Pk+1 it's true.Hence, by principal of mathematical induction we can say Pn is true.

Page No 71:

Question 12:

2n < (n + 2)! for all natural number n.

Answer:

Let P(n) : 2< (+ 2)! ∀∈ N

Check that statement is true for = 1

P(1): 2(1) < (1+2)!

P(1): 2 < 6

So, P(n) is true for = 1

Assume P(k) to be true and then prove P(k+1) is true.

Assume that P(k) is true for some natural number k.

⇒ 2k < (+ 2)!        ..…(1)

To prove : P(+ 1) is true, we have to show that

2(+ 1) < ((+ 1)+2)!

Or 2(+ 1) < (+ 3)!

∴ 2< (+ 2)!

Adding 2 both the sides

⇒ 2+ 2 < (+ 2)! + 2

⇒ 2(+ 1) < (+ 2)! + 2      …..(2)

Now, we know that

(+ 3)! = (+ 3)(+ 2)! which is greater than (+ 2)! + 2 as (+ 2)! is (+ 3) times in the former and one time in the later.

⇒ (+ 2)! + 2 < (+ 3)!             …..(3)

Using equations (2) & (3), we get

2(+ 1) < (+ 3)!

Thus, P(+ 1) is true whenever P(k) is true.

Hence, By Principle of mathematical Induction P(n) is true for all natural numbers n.

Page No 71:

Question 13:

n<11+12+...+1n, for all natural numb n ≥ 2ers.

Answer:

P2 is 2<11+12=1.414<1.70, thus it is true.P3 is 3<11+12+13=1.732<2.284, thus it is true.Let us consider Pk=k<11+12+...+1k, is true.Add k+1   on both sidek+k+1  -k<11+12+...+1k+k+1  -kk+1  <11+12+...+1k+1k+1  

Hence, by mathematical induction, for each natural number n ≥ 2, P(n) is n<11+12+...+1n
 

Page No 71:

Question 14:

2 + 4 + 6 + ... + 2n = n2 + n for all natural numbers n.

Answer:

Let P(n) :2 + 4 + 6+ …+ 2n = n2 + n
P(1): 2 = 12 + 1 = 2, which is true
Hence, P(1) is true.

Let us assume that P(n) is true for some natural number n = k.
P(k): 2 + 4 + 6 + ...+ 2k = k2 + k                 .....(1)

Now, we have to prove that P(k + 1) is true.
P(k + 1): 2 + 4 + 6 + 8 + …+ 2k + 2(k +1)
= k2 + k + 2(k+ 1)                           [Using (1)]
= k2  + k + 2k + 2
= k2  + 2k + 1 + k + 1
= (k + 1)2 + k + 1
Hence, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for any natural number n.

Page No 71:

Question 15:

1 + 2 + 22 + ... + 2n = 2n+1 – 1 for all natural numbers n.

Answer:

Let P(n): 1 + 2 + 22 + … + 2n = 2n +1 – 1, for all natural numbers n
P(1): 1 =20 + 1 − 1 = 2 − 1 = 1, which is true.
Hence, P(1) is true.

Let us assume that P(n) is true for some natural number n = k.

P(k): l + 2 + 22 +…+ 2k = 2k + 1 − 1            .....(1)

Now, we have to prove that P(k + 1) is true.

P(k + 1): 1+2 + 22 +…+ 2k + 2k + 1

= 2k + 1 − 1 + 2k + 1                             [Using (1)]
= 2 × 2k + 1 − 1
= 2(k + 1) + 1 â€‹− 1

Hence, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for any natural number n.

Page No 71:

Question 16:

1 + 5 + 9 + ... + (4n – 3) = n (2n – 1) for all natural numbers n.

Answer:

Let P(n): 1 + 5 + 9 + … + (4n – 3) = n(2n – 1), for all natural numbers n.
P(1): 1 = 1(2 × 1 – 1) = 1, which is true.
Hence, P(l) is true.

Let us assume that P(n) is true for some natural number n = k.
P(k): l + 5 + 9 +…+ (4k – 3) = k(2k – 1)                     .....(1)

Now, we have to prove that P(k + 1) is true.
P(k+ 1): 1 + 5 + 9 + … +  (4k – 3) + [4(+ 1) – 3]
= 2k2 – + 4+ 4 – 3
= 2k2 + 3k + 1
= (+ 1)(2k + 1)
= (+ l)[2(+ l) – l]

Hence, P(k + 1) is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for any natural number n.

Page No 71:

Question 17:

A sequence a1, a2, a3 ... is defined by letting a1 = 3 and ak = 7ak–1 for all natural numbers k ≥ 2. Show that an = 3.7n–1 for all natural numbers.

Answer:

We have a sequence a1a2a3 ... is defined by letting a1 = 3 and ak = 7a– 1 for all natural numbers k ≥ 2.

Given: a1 = 3 and ak = 7a– 1

a2=7×a1=7×3=21=3·72-1a3=7×a2=72×a1=49×3=147=3·73-1an=7×an-1=3·7n-1

Thus, 

an+1=7×an+1-1=7×an=7×3×7n-1=3×7n+1-1

Thus, an+1 is true for an is true.

For each natural number n it is true that an = 3.7– 1.

Page No 71:

Question 18:

A sequence b0, b1, b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k. Show that bn = 5 + 4n for all natural number n using mathematical induction.

Answer:

We have a sequence b0b1b2 ... is defined by letting b0 = 5 and bk = 4 + bk – 1 for all natural numbers k.

Let P(n): bn = 5 + 4n, for all natural numbers.

For n = 1, b1 = 5 + 4 × 1 = 9
Also, b0 = 5
∴ b1 = 4 + b0 = 4 + 5 = 9
Thus, P(1) is true.
Now, let us assume that P(n) is true for some natural number nm.

 ∴ P(m): bm = 5 + 4m

Now, to prove that P(k + 1) is true, we have to show that
P(m + 1): bm + 1 = 5 + 4(m + 1)

bm + 1 = 4 + b(m + 1) − 1

bm + 1 = 4 + bm = 4 + 5 + 4m = 5 + 4(m + 1)

Hence, P(m + 1) is true whenever P(m) is true.

So, by the principle of mathematical induction P(n) is true for any natural number.

Page No 71:

Question 19:

A sequence d1, d2, d3 ... is defined by letting d1 = 2 and dk=dk-1k for all natural numbers, k ≥ 2. Show that dn=2n! for all nN.

Answer:

Given that: d1 = 2 and dk=dk-1k

Let P(n): dn=2n!

Now, P(1): d1=21!=2, which is true for P(1).

Let it be true for P(k).

∴ P(k): dk=2k!

Given that: dk=dk-1k

dk+1=dk+1-1k+1=dkk+1dk+1=1k+1·dkdk+1=1k+1·2k!dk+1=2k+1!

Which is true for P(k + 1).

Hence, P(k + 1) is true whenever P(k) is true. 

Page No 71:

Question 20:

Prove that for all n ∈ N
cos α + cos (α + β) + cos (α + 2β) + ... + cos (α + (n –1) β)

=cosα+n-12βsinnβ2sinβ2

Answer:

Let Pn be the given statement.i.e., Pn: cos α+cos α+β+cos α+2β + ... + cos α+n1β=cosα+n-12βsinnβ2sinβ2We note that Pn is true for n=1 since cos α=cosα+1-12βsin1×β2sinβ2Assume that Pk is truei.e. Pk: cos α+cos α+β+cos α+2β + ... + cos α+k1β=cosα+k-12βsinkβ2sinβ2.....(1)We shall now prove that Pk+1 is true whenever Pk is true.We have, Pk+1: cos α+cos α+β+cos α+2β + ... + cos α+k1β+cos α+k+11βP(k+1): cos α+cos α+β+cos α+2β + ... + cos α+k1β+cos α+kβPk+1: cosα+k-12βsinkβ2sinβ2+cos α+kβ.....using (1)Pk+1: cosα+k-12βsinkβ2+cos α+kβsinβ2sinβ2Pk+1: 2cosα+k-12βsinkβ2+2cos α+kβsinβ22sinβ2Pk+1: sinα+k-12β+kβ2+sinα+k-12β-kβ2+sinα+kβ+β2-sinα+kβ-β22sinβ2Pk+1: sinα+kβ-β2-sinα-β2+sinα+kβ+β2-sinα+kβ-β22sinβ2Pk+1: sinα+kβ+β2-sinα-β22sinβ2Pk+1: 2cosα+kβ+β2+α-β22sinα+kβ+β2-α+β222sinβ2Pk+1: cos2α+kβ2sinkβ+β2sinβ2Pk+1: cosα+k2βsink+1βsinβ2Therefore, Pk+1 is also true whenever Pk is true. Hence, by mathematical inductionPn is true for all nN.

Page No 71:

Question 21:

Prove that, cos θ cos 2θ cos22θ ... cos2n–1θ = sin 2nθ2n sin θ, for all n ∈ N.

Answer:

Let P(n): cos θ cos 2θ cos22θ ... cos2n–1θ = sin 2nθ2n sin θ

P1: cos θ=sin 21θ21 sin θ=sin 2θ2sin θ=2sin θ cosθ2 sin θ=cos θ, which is true.

Hence, P(1) is true.

Now, let us assume that P(n) is true for some natural number nk.

Pk: cos θ cos 22 θ... cos 2k-1 θ=sin 2kθ2k sin θ        .....1

To prove that P(k + 1) is true, we have to show that

Pk+1: cos θ cos 22 θ... cos 2k-1 θ cos 2k θ=sin 2k+1 θ2k+1 sin θ

Now, cos θ cos 22 θ... cos 2k-1 θ cos 2k θ=sin 2k θ2k sin θ·cos 2k θ=2·sin 2k θ cos 2k θ2·2k sin θ=sin 2·2k θ2k+1 sin θ=sin 2k+1 θ2k+1 sin θ

Hence, P(k + 1) is true whenever P(k) is true.

Page No 71:

Question 22:

Prove that, sin θ + sin 2θ + sin 3 θ + ... + sin nθ =sin nθ2sinn+12 θsin θ2, for all n ∈ N.

Answer:

Given that: sin θ + sin 2θ + sin 3 θ + ... + sin nθ =sin nθ2sinn+12 θsin θ2for all n ∈ N

Now, for n = 1
P(1): sin θ=sin θ2sin1+12 θsin θ2P(1): sin θ=sin θ2sin θsin θ2P(1): sin θ=sin θ

Hence, P(1) is true.

Assume that P(n) is true for a natural number nk.

P(k) : sin θ + sin 2θ + sin 3 θ + ... + sin kθ =sin kθ2sink+12 θsin θ2        ....(1)

Now, to prove that P(+ 1) is true, we have to show that:

P(k + 1) : sin θ + sin 2θ + sin 3 θ + ... + sin kθ + sin (k + 1)θ =sin k+1θ2sink+1+12 θsin θ2

From (1), we have

P(k + 1) : sin θ + sin 2θ + sin 3 θ + ... + sin kθ + sin (k + 1)θ =sin kθ2sink+12 θsin θ2+sin k+1θ 

=sin kθ2sink+12 θ+sin k+1θ sin θ2sin θ2=coskθ2-k+12 θ-coskθ2+k+12 θ+cosk+1θ-θ22sinθ2=cosθ2-coskθ+θ2+coskθ+θ2-coskθ+3θ22sinθ2=cosθ2-coskθ+3θ22sinθ2=2sin12kθ+3θ2+θ2·sin12kθ+3θ2-θ22sinθ2=2sinkθ+2θ2·sinkθ+θ22sinθ2=sin k+1θ2sink+1+12 θsin θ2\

Hence, P(k + 1) is true when P(k) is true.

So, by the principle of mathematical induction, P(n) is true for any natural number n



 



Page No 72:

Question 23:

Show that n55+n33+7n15 is a natural number for all n ∈ N.

Answer:

Given that, n55+n33+7n15 is a natural number for all n ∈ N.

For n = 1

P1: 155+133+7115=1515=1

Hence, P(1) is true.

Assume that P(n) is true for a natural number nk.

Pk: k55+k33+7k15 is a natural number.             .....(1)

To prove: Pk+1=k+155+k+133+7k+115

Pk+1=k5+5k4+10k3+10k2+5k+15+k3+3k2+3k+13+7k+715=k55+k33+7k15+k4+3k3+2k2+k+15+k2+k+13+715=k55+k33+7k15+k4+3k3+3k2+2k+1

Page No 72:

Question 24:

Prove that 1n+1+1n+2+... +12n>1324, for all natural numbers n > 1.

Answer:

Let Pn: 1n+1+1n+2+... +12n>1324 for all natural number n>1.

P2:12+1+12+2>1324712>1324, which is true.Thus, P2 is true.Let assume Pn is true for some natural number n=k.Pk:1k+1+1k+2+...+12k>1324Now, n=k+1Pk+1:1k+1+1+1k+1+2+...+12k+1>13241k+1+1k+2+1k+3+...+12k+12k+1+12k+1-1k+1>13241k+1+1k+2+1k+3+...+12k+122k+1k+1>1324Thus, Pk+1 is ture.Hence, by principle of mathematical induction Pn:1n+1+1n+2+...+12n>1324 is true for all natural number n>1.

Page No 72:

Question 25:

Prove that number of subsets of a set containing n distinct elements is 2n, for all n ∈ N.

Answer:

Let P(n): Number of subset of a set containing n distinct elements is 2n, for all n ∈ N.
For n = 1, consider set A = {1}.
So, set of subsets is {{1}, ∅}, which contains 2
1 elements.
So, P(1) is true.
Let us assume that P(n) is true, for some natural number n = k.
P(k): Number of subsets of a set containing k distinct elements is 2k To prove that P(k + 1) is true,
we have to show that P(k + 1): Number of subsets of a set containing (k + 1) distinct elements is 2k+1
We know that, with the addition of one element in the set, the number of subsets become double.
Number of subsets of a set containing (k+ 1) distinct elements = 2×2k = 2k+1
So, P(k + 1) is true.
Hence, P(n) is true.

Page No 72:

Question 26:

Choose the correct answer from the given four options:
If 10n + 3.4n+2 + k is divisible by 9 for all n ∈ N, then the least positive integral value of k is
(A) 5
(B) 3
(C) 7
(D) 1

Answer:

Let P(n): 10n + 3.4n+2 k is divisible by 9 for all n ∈ N.

For n = 1, the given statement is also true 101 + 3.41+2 k is divisible by 9.

⇒ 10 + 192 k is divisible by 9

⇒ (202 k) is divisible by 9

If (202 k​) is divisible by 9, then the least value of k must be 5.

⇒ 207 is divisible by 9

Thus, the least value of k is 5.

Hence, the correct answer is option (A).

Page No 72:

Question 27:

Choose the correct answer from the given four options:
For all n ∈ N, 3.52n+1 + 23n+1 is divisible by
(A) 19
(B) 17
(C) 23
(D) 25

Answer:

Given that: 3.52n+1 + 23n+1

For n = 1, 3.52+1 + 23+1

= 3 × 125 + 16

= 391 = 17 × 23

Which is divisible by both 17 and 23.

Hence, the correct answer is option (B) and (C).

Page No 72:

Question 28:

Choose the correct answer from the given four options:
If xn – 1 is divisible by xk, then the least positive integral value of k is
(A) 1
(B) 2
(C) 3
(D) 4

Answer:

Let P(n): xn – 1 is divisible by (x – k).

For n = 1, x1 – 1 is divisible by (x – 1).

Since, if x – 1 is divisible by (x – k), then the least possible integral value of k is 1. 

Hence, the correct answer is option (A).

Page No 72:

Question 29:

Fill in the blanks in the following :
If P(n) : 2n < n!, nN, then P(n) is true for all n ≥ ________.

Answer:

Given that: P(n) : 2n < n!, n ∈ N

For, n = 1, 2 < 1! ⇒ 2 < 1                        [false]
For, n = 2, 4​ < 2! ⇒ 2 < 2                        [false]
For, n = 3, 6 ​< 3! ⇒ 6 < 6                        [false]
For, n = 4, 8 ​< 4! ⇒ 8 < 24                      [true]
For, n = 5, 10 ​< 5! ⇒ 10 < 120                [true]

Hence, P(n) is true for all n ≥ 4.

Page No 72:

Question 30:

State whether the following statement is true or false. Justify.
Let P(n) be a statement and let P(k) ⇒ P(k + 1), for some natural number k, then P(n) is true for all nN.

Answer:

False;

The given statement is false because P(1) is true has not been proved.



View NCERT Solutions for all chapters of Class 11