Solve this:
  58 .   A   s e r i e s   L - C - R   c i r c u i t   i s   c o n n e c t e d   t o   a n   A C   s o u r c e   h a v i n g   v o l t a g e               V = V m   sin   ω t .   D e r i v e   t h e   e x p r e s s i o n   f o r   t h e   i n s tan tan e o u s   c u r r e n t   I   a n d                   i t s   p h a s e   r e l a t i o n s h i p   t o   t h e   a p p l i e d   v o l t a g e .   O b t a i n   t h e   c o n d i t i o n   f o r               r e s o n a n c e   t o   o c c u r .   D e f i n e   p o w e r   f a c t o r .   S t a t e   t h e   c o n d i t i o n s   u n d e r               w h i c h   i t   i s         ( i )   m a x i m u m   a n d         ( i i )   m i n i m u m .  

Dear Student,
                         ​The actual derivation involves a second order differential equation involving complex variables. Here I am giving you a brief result of that. Z is the impedance of the ckt.
Im=VmZ=VmR2+ωL-1ωC2
And the phase angle,
φ=tan-1XL-XCR=tan-1ωL-1ωCR
Current is given by,
I(t)=Imsin(ωt-φ)
Instantaneous current,
I(0)=-Imsin(φ)
For resinance condition Z should be minimum hence it will be when 1wC=Lww=1LC
And Power factor 
cosφ= RZ; where Z=R2+(XL-XC)2where R is the resitance, XL=effective resistance offered by indutorand XC=effective resistance offered by capacitor. At resonance XL = XCSo cosφ= RZ=RR=1Hence power factor at resonance of LCR circuit is 1 .

Maximum power factor ( means maximum power consuming ) when it is one 
in above case 
Power factor has R and Z   , and R and Z can not give any negative value .
hence minimum value of power factor is 0 when circuit is purely capacitive .
Regards
 

  • 0
What are you looking for?